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A variable mesh cubic spline technique is developed for the shock-like solution of the one- 
dimensional Burgers’ equation so that the necessity of taking very fine mesh all over the 
computational region could be avoided. The scheme is employed, by taking a typical initial 
solution, to study the propagation of plane N-waves. Results are presented for various values 
of the dissipative parameter 6. Numerical results are in good agreement with the known exact 
results. 

1. IN-~R~DuCTION 

The equation under discussion in this paper is the following: 

6 
ut+uux=-u,,, 

2 (1) 

where u = u(x, t) and 6 is the coefficient of diffusivity, also known as the dissipative 
parameter. Burgers [l] proposed (1) as model for one-dimensional turbulence and 
shock waves, and subsequently it is called Burgers’ equation. This equation admits 
the transformation 

known as the Hopf-Cole [2,3] transformation and gives the well-known heat 
equation in @. Cole [3] described in details the general properties of (1). Lighthill [4] 
derived (1) from the basic equation in gas dynamics and gave the analytical solution, 
the so-called N-wave solution, where the effect of diffusion is confined to two thin 
boundary layers each of thickness (&)Y2, corresponding to head and tail shocks in 
explosions or sonic boom theory. 

When the flow characteristics are continuous, the uniform mesh finite difference 
methods can be used for solving problems over a regular domain in fluid mechanics 
and allied areas. But, in the case that the flow characteristics have discontinuities, the 
uniform mesh techniques may not provide realistic results unless a very fine mesh is 
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used. Normally, a very line mesh is required in the neighborhoods of the points of 
discontinuity. Sachdev and Seebass [5] used an implicit predictor-corrector finite 
difference method of Douglas and Jones [6] for the solution of (1) to study the 
propagation of plane N-waves. They [5] used the uniform mesh of size lo-’ in both 
x and t directions and gave the results for 6 = lo-*. They showed that the uniform 
mesh of size lo-‘, which is of O(6), is sufficient for the numerical results. 
Nevertheless, in practice we come across even smaller values of 6 and in that case 
even if we take the uniform mesh of size of O(6) it may not be possible to solve the 
problem. 

Jain and Holla [7] and Jain and Lohar [8] described the cubic spline techniques 
for solving (1) using uniform mesh. These techniques also could not be used for the 
shock-like solution of (1) since very fine mesh is needed in the neighborhood of the 
center of the shock. Recently, Chong [9] suggested a variable mesh finite difference 
method where he used the predictor-corrector formula of Douglas and Jones [6]. He 
described the concept of variable mesh and observed that inside the boundary layer 
or in the neighborhood of the points of discontinuity we need to use fine mesh, while 
outside the boundary layers, we can afford to use coarser mesh. Moreover, the change 
in the mesh size, i.e., from finer to coarser and vice versa, should be gradual. 

In this paper, a new numerical method Variable Mesh Cubic Spline Technique 
(VMCST)is proposed for the plane N-wave solution of (1). Numerical solution 
obtained by the scheme is compared with the exact solution given by Lighthill [4] 
and is found to be in good agreement. 

2. THE CUBIC SPLINE TECHNIQUE 

Consider the equation 

u,+f,=$u,,, (2) 

where f = u2/2 is the homogeneous function of u of degree 2. We wish to find N-wave 
solution of (2) in the domain [0 < x < c] x [0 < t < T], where c is a positive quantity 
such that U(X, f) < IO-* for x > c and T is a fixed value of time t. 

It is known that a complicated problem can be solved more efficiently by using the 
splitting technique. Equation (2) is a nonlinear parabolic equation. We split (2) into 
two equations as follows [8]: 

+=-f,, (3) 

1 6 
-q=-u 
2 2xX’ (4) 
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Approximating the time derivative by forward difference and the space derivative by 
the first-order derivatives of the cubic spline function, (3) is approximated as 

0 
1 
my+1’2 + (1 -&Jl)m~=-$(~+1~2- q),>, (5) 

where 0, E [0, l] is cubic spline parameter, ml = SL(xi), S,(x) is the cubic spline 
function, V; is the discrete approximation of U(X, t) at (xi, t,), i = 0, l,..., I; 
n = 0, l,..., and k is the time step. 

We take the cubic spline relations [lo] 

1 
Fml-,+2 -+ 

I (ii &) 4 +&my+’ 

=~Ifl-f~-,)+~Cfl+‘-f;), 
It1 

(6) 

1 

him’-’ 
v+1’2+2 ($+~)m~+1f2+~mZ:/2 

(7) 
=~Ifr+“‘-f~~:l’)+~(fr::f’-fl+“2). 

I 1+1 

Multiplying (5) by the factors l/h,, 2[(l/h,) + (l/hi+,)], and l/hitl, respectively, 
adding the resulting equations, and using (6) and (7), we get 

34 
I 
$(f;“” -f;_‘,v’) + $- (fyy- 

I it1 
f;+y’)[ 

+3(1 -6) I 
$fl-f:-A+& 

1 i+1 
UT+1 -f;)l 

=-- 
: l~(~~‘V’-(i;_l)+2(~+~)(U;+Vi-~) 

+&TY’- v+,,/. 

(8) 

Transposing all the terms having superscript n + 4 to the left-hand side and 
simplifying, we get 

{hi+] c.?l”‘+ 2(h, + hi+]) vty2 + h,v+,“‘} 

+~(h:,,f;_‘:l’+(h:,,-hf)S;+U1-h:f;,t,V2} 
l i+1 

=~~,+1~-1+2(~,+~i+l)U;+~*~tl) 

(9) 

- 3(:,he1)kIh:+,S;_,+(h:,,-h:)f;-h:f1,,}. 
i it1 



436 LOHAR AND JAIN 

Again, approximating the time derivative by forward differences and the space 
derivative by second-order derivatives of cubic spline function, (4) is approximated as 

e*A4;+ + (1 -e,)M:+“2+(~;+l- v+1/2), (10) 

where 0, E [0, l] is the cubic spline parameter and My = Si(xi). We take the cubic 
spline relations [lo] 

~hiM~+l’ + $(hi + hi+])“f+l + ihi+l”f,+,’ 

=~(u;::-~+‘)-t(rr;+‘-~~:), 
(11) 

1+1 1 

~h,M;y’+ 3(hi + hi+l)M;+1’2 + ~h,+,M;,+“‘2 

= $ (q$‘l’ - q+ V’) - +, (V”f2 - qy’). 
(12) 

1t1 I 

Eliminating My’ ’ and MY’ 1’2 from (10) with the help of (11) and (12) in the similar 
manner as for the derivaiive of (9) from (5), (6), and (7), we get 

+ hitl + h. 
I 

A! ! -  (1 - e,) 1 uy,‘,? 

1t1 

Equations (9) and (13) constitute an implicit two-step finite difference scheme for 
solving (2). This scheme leads to a system of nonlinear difference equations to be 
solved at each time step. One can remove the nonlinearity occurring in (9) and 
maintain the order of accuracy by the linearization procedure commonly used in the 
numerical solution of nonlinear systems of ordinary differential equations [ 111. 
Equation (9) transforms to 

h itl +,A~-, 
I 

~~;::/~+(h~+h~+,, 2++ 
I 

edhi+ l - h,) A; 
i i+1 I 

x U;+1’2+hr 1 +h 
( 

3k e A” I f+l qy’ 
it1 

={hi+l~-,+2(h,+h,tl)~+h,~tl} 

-~(l-e,)(hffl+,+th:+,-h:)fl-h:+,fl-,}, 
i i+1 

(14) 
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where 

Equations (13) and (14) yield tridiagonal systems which are solved by the Thomas 
algorithm [ 121. 

3. N-WAVE SOLUTION OF THE BURGERS'EQUATION 

We consider the case of a balanced N-wave for which 

1 

a2 
udx=O. (16) 

--oo 

The Reynolds number of each lobe of the N-waves, known as the lobe Reynolds 
number is defined as [4], 

The lobe Reynolds number at time t, for some t,, is given by [4] 

R=log /1+ (+)“‘l. (18) 

For the initial condition (t = l), 

u(x, l)= 1 +t;ll'~xp(x2,2~) ' 

the velocity profile at lobe Reynolds number R is 

u(x, t) = x/t 
1 + exp(x*/2St)/(e” - 1) ’ 

By using (18) 

u(x, t) = x/t 
1 + exp(x2/26t)(t/t,)1’2 ’ (21) 

As the solution is antisymmetric in x and has two boundary layers of thickness (dt)“’ 
each corresponding to the head and tail shock of a sonic boom. We solve (1) for 
x > 0 only and take the left boundary condition as ~(0, t) = 0, for all t. Since u 
decays exponentially for large x, for computational work we take a positive quantity 
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c such that u(.x, t) < IO-* for x > c. As the solution progresses in t, the value of c 
changes so that the grid points are either increased or decreased (as the case may be) 
with u = 0. 

4. METHOD OF SOLUTION 

For generating the nonuniform mesh we briefly describe the procedure due to 
Chong 191. To locate the center of the shock we take line mesh of size h/4 or h/5 
where h = lo-‘. The center of the shock occurs at the place where ]d,u 1 is 
maximum, say, at x = xM so that (A, U, ( is maximum. The thickness of te shock, y, is 
given by 

Y = W,Y,,I~ (22) 

If (fi} is the set of new grid points in the nonuniform mesh, which we shall generate, 
and fM, is the center of the shock in the nonuniform mesh then ZM, = xM. We take 

h-,, = ayh; (23) 

where &,,, = Y,,,, - f,+,-, and a is a positive constant. This value of kM, can be made 
much smaller than the value of h. We take L grid points of size KM, on both sides of 
the center of the shock. Outside this region, i.e., [z& - Lh-,,, TM, + Lh-,,] we take the 
gradually increasing mesh defined by 

h-,,*(,+i,=(l +ph)‘iM,, i = 1, 2, 3 ,..., (24) 

where j3 > 0. At the place where the mesh size becomes larger than h, we stop using 
(24) and take remaining mesh sizes to be h until [0, c) is covered. For computational 
work we took L = 50 (it may be varied according to the shock thickness). In this 
procedure it may so happen that x = 0 is not a mesh point. In that case we take the 
first negative grid point x = -b (0 ( b ( h), and multiply all the mesh sizes by the 
factor xM/(xM + b) so that x = 0 and x = TM, are both the grid points on the new grid 
system. 

Again, we find the center of the shock and the shock thickness in the new grid 
system. Let these values be x,,, and y’ respectively. If ]M’ - M” ( > 15 or ] y - y’ 1 > 
0.1, we repeat the nonuniform mesh construction. For the computational work, the 
time step k, at time t = t, is taken as k, = lOh,,,, where h,,, is the minimum mesh 
size in x at time t = t,. 

We apply the cubic spline technique derived in Section 2 to find the solution at 
next time step. By the nature of the solution, as t increases, the center of the shock 
starts shifting. If x, is the center of the shock at last time we have rezoned and x,, is 
the center of the shock at the latest time, then ]M - M’ ] will increase. When 
) M - M’ ] > 15 or y has changed by more than lo%, we again rezone the mesh. After 
rezoning we use cubic spline interpolation procedure to find u on the new mesh 
system. The method is repeated at later times. 
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5. RESULTS AND DISCUSSION 

The proposed variable mesh cubic spiine technique is employed to study the 
propagation of the N-wave for the following three cases: 

Case I: 6= 10-2, a=0.2, p=s.o 

Case II: 6= 10-3, a = 0.4, /?= 2.5. 

Case III: 6= 10m4, a=O.l, j?= 5.0. 

For 6 = lo-* and 6 = lop3 we took 

to = exp( l/46) (25) 

so that at initial time t = 1, the shock is at x = 0.5. For 6 = 10m4, due to 
computational difficulty, we could not use (25) for the constant to; hence we have 
taken to = 10300 so that at t = 1, the shock appears at x = 0.2625. 

Figures l-3 represent the propagation of the shocks for 6 = IO-*, 6 = 10P3, and 
6 = 10e4, respectively. For 6 = lo-*, the shock is observed to be smooth at c = 1 and 
becomes smoother as time progresses. For S = 10-3, the initial shock is found to be 
sharp and it becomes slightly smooth as time increases. While for 6 = 10e4, the 
initial shock is very steep and remains so with a little smoothness for higher values of 
t. As time passes, the center of the shock in each case moves toward the right and the 
shock thickness increases. For 6 = 10d4, the increment in the shock thickness, as time 
progresses, is smaller compared to the case of 6 = 10e3 and 6 = lo-*. The numerical 
values of the center of the shock and the shock thickness are represented in Table I 
(for 6 = 10e3) and Table II (for 6 = 10P4). The exact and the numerical values of the 
lobe Reynolds number R and maximum u are included in these tables for various 
values of time t. A close look at these tables reveals that the numerical results 
obtained by the proposed variable mesh cubic spline technique gives satisfactory 

d.r - 

0 0.1 0.2 o-3 0.L 0.5 a6 C-7 0.B 0.9 1.0 1.1 1.2 
I- 

FIG. 1. Solution of Burgers’ equation, 6 = lo-*, a = 0.2, /I = 5.0. 
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0.5 - 

0 0.1 0.2 0.3 0-L o-5 0.6 a7 a.9 as 1.0 1.1 

X---9 

FIG. 2. Solution of Burgers’ equation, S = lo-‘, a = 0.4, /3 = 2.5. 

FIG. 3. Solution of Burgers’ equation, 6 = 10m4, CI = 0.1, P = 5.00. 

results to an accuracy of 0( lo-“). Total number of mesh points needed for 
calculations are also shown in the tables. 

The proposed variable mesh cubic spline technique can be extended to solve 
problems with singularities. For example, consider (1) along with the initial condition 

1131 
#(X, 0) = 1, 0 Q n Q 0.4, 

= 0, 0.4 <x< 1.0. 
(26) 



VARIABLE MESH CUBJC SPLJNE T'ECHNJQUE 441 

TABLE1 

Comparison of Exact and Numerical Results for 
6 = lo-‘, a = 0.4, p = 2.5 

R Max. u Max. Number Center Shock 
t R exact numer- (com- error of mesh of the thick- 

ical puted) in u points shock ness 

1.0 125.0 124.99999 0.48688 - 409 0.5 0.0182 
2.03615 124.64446 124.64402 0.34055 0.00015 390 0.7125 0.0350 
3.06306 124.44029 124.43906 0.27728 0.00026 382 0.08725 0.0522 
4.00758 124.30590 124.30557 0.24228 0.00032 378 0.9975 0.0677 
5.23250 124.17255 124.17205 0.21170 0.00041 376 1.1400 0.0871 

TABLE11 

Comparison of Exact and Numerical Results for 
6= lo-‘, cr=O.l,B=5.0 

R Max. u Max. Number Center Shock 
1 R exact numer- (com- error of mesh of the thick- 

ical puted) in u points shock ness 

1.0 345.38776 345.38787 0.25995 - 292 0.2625 0.0193 
2.13251 345.00911 345.00930 0.17810 o.ooo19 293 0.3825 0.0304 
3.02905 344.83363 344.83388 0.14954 0.0003 1 295 0.4575 0.0352 
4.02905 344.68193 344.68227 0.12863 0.00043 296 0.5325 0.043 1 
5.01263 344.58178 344.58210 0.11656 0.00060 302 0.5875 0.0479 

The analytical solution of this problem given by Lighthill [4] represents a shock 
wave progressing along the x axis. Davis [ 131 found the solution of (I) for the initial 
data (26) by applying Galerkin’s method. The variable mesh cubic spline technique 
can well be applied for the numerical solution of this problem, 
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